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Abstract
Explanations for AI systems have been used to
improve the trustworthiness of these systems.
These explanations can be used to find the un-
desirable implicit biases that machine learning
models can rely on for their outputs. We apply
this concept to detect gender bias in sentiment
analysis models for textual data. We employ
two existing frameworks: LIME and SHAP,
which produce explanations for text classifiers.
With the help of an Equity Evaluation Corpus
(EEC), we add a feminine, neutral, and mascu-
line gender signals for otherwise identical input
to the system and use explanations from LIME
and SHAP to find a trend of bias, and identify
terms that contribute the most to it.

1 Introduction

Language models have increasingly been found to
reflect societal biases in their outputs, gender bias
being one of them. Gender Bias here refers to when
the gender signals in the input affect a model’s pre-
dictions. Consider a set of three sentences fed into
the model, only with different gender signals, such
as "He was furious," "She was furious," and "They
were furious." All three of these sentences should
ideally predict the same final sentiment polarity.
However, since the model learns from the train-
ing set, it learns undesirable associations between
words which we observe as gender bias. Gender
bias in language models can be harmful in more
than one way, considering their potential impact
on downstream tasks which have vast industrial
applications.

In recent years, there has been a growing trend
of work that focuses on measuring and mitigat-
ing gender bias (Bolukbasi et al., 2016; Gonen and
Goldberg, 2019; Blodgett et al., 2020; Savoldi et al.,
2021). There are limitations to some of these ex-
isting approaches, primarily considering that they
are only applicable to the ‘binary’ gender. We aim
to fill this gap by proposing the use of explainabil-
ity to observe and uncover gender bias trends in

model outputs and consequently measure the bias.
Explainable AI is a field of research that transforms
the classifier from a black box of information into
a glass box that humans can easily interpret and
understand. It helps us visualize the data in the
training set by making the underlying contents of
the model transparent.

This paper addresses whether explainable AI
methods can be used to detect gender bias in tex-
tual data. We will be discussing the application of
model-agnostic methods on the dataset and how
these explanations help uncover the hidden bias.

2 Related Work

2.1 Gender Bias

Recent studies have shown that in sentiment analy-
sis when models are trained on human-handwritten
text, they predict biased outcomes, which may
cause harm in the real-world applications of that
model. Thus, it is imperative to detect and mitigate
these biases to ensure fairness in sentiment analy-
sis systems, as shown by existing studies (Ribeiro
et al., 2020; Kiritchenko and Mohammad, 2018).

To measure gender bias, Zhao et al. (2018); Lu
et al. (2019); Kiritchenko and Mohammad (2018)
proposed gender-swapping, which referred to inter-
changing each male-defined word with its respec-
tive female equivalent and vice versa. An ideal fair
model would predict equally for both sentences.
However, since the model is biased, the difference
in evaluation scores indicates the degree of gender
bias detected in the model. Zhao et al. (2017) also
proposed a method called Word Embedding Asso-
ciation Test (WEAT) to measure bias inside word
embeddings.

Another method proposed was to use standard
evaluation data sets to detect the degree of gender
bias. However, since they contain more male ref-
erences than females, we opt for specific data sets
called Gender Bias Evaluation Test sets (GBETs)



Template #sent
<Person>feels <emotional state word>. 280
The situation makes <person>feel <emotional state word>. 280
I made <person>feel <emotional state word>. 280
<Person>made me feel <emotional state word>. 280
<Person>found himself/herself in a/an <emotional situation word>situation. 280
<Person>told us all about the recent <emotional situation word>events. 280
The conversation with <person>was <emotional situation word>. 280
Total 1960

Table 1: Lists of template sentences and the sentence count

(Sun et al., 2019). One such example for GBET
used in this paper is the Equity Evaluation Cor-
pus (EEC) proposed by Kiritchenko and Moham-
mad (2018) for sentiment analysis. It generates
test cases produced from 11 handcrafted templates.
Each EEC sentence contains an emotional word
(e.g., anger, fear, joy, sadness), intensities for each
emotion, and a gender-specific term.

2.2 Explainable Sentiment Analysis

Sentiment Analysis refers to detecting sentiments
and opinions present in textual datasets (Liu, 2012).
The need for transparency in such models is imper-
ative to understand why an instance of the textual
dataset is attributed to a particular polarity (Zucco
et al., 2018; So, 2020; Hase and Bansal, 2020; Sil-
veira et al., 2019).

Explainable AI (XAI) is a field of artificial intel-
ligence that develops explainable methods, which
enable transparency and help understand ML mod-
els (Miller, 2019). Luo et al. (2016); Amrani et al.
(2018); Jabreel and Moreno (2018) suggested using
Scikit learn models like Support Vector Machines
(SVM) (Steinwart and Christmann, 2008), Ran-
dom Forest (RF) (Breiman, 2001), and XGB Boost
Classifier (Chen and Guestrin, 2016) since they are
regarded as good performing models in sentiment
analysis. The recent work of Bodria et al. (2020)
proposed attention-based techniques to provide ex-
planations and extract meaningful sentiment scores
to explore the internal behavior of deep neural net-
work models.

2.3 Explainable approaches to measure
fairness

Since XAI is a relatively new field, we could only
find a limited number of research applying XAI
methods to measure gender bias. Domnich and
Anbarjafari (2021) implemented neural networks
to show how gender bias affected the recognition
of emotion. Jain et al. (2020) proposed a frame-

work for evaluating explainable AI tools based on
their capacity for detecting bias and fairness. They
described statistical notions of fairness in terms of
explanations given by the model. Alikhademi et al.
(2021) addressed the needs of both XAI and Fair
AI tools and proposed features for explaining fair-
ness in ML models and data. They defined a rubric
to create and evaluate XAI tools for fairness.

This paper has applied both local explainability
for single instances using LIME and global expla-
nations for the entire model using SHAP. We do
this to compare the performance of both these ex-
planations to understand gender bias in our dataset.

3 Experimental Setup

3.1 Equity Evaluation Corpus

To estimate the bias in the model’s predictions, we
used the Equity Evaluation Corpus (Kiritchenko
and Mohammad, 2018), a corpus containing a se-
ries of templates of sentences for masculine and
feminine genders. We extended this corpus in our
work so that it could accommodate gender-neutral
terms and omitted the creation of template sen-
tences including terms for which we could not find
the gender-neutral equivalent 1. The total length of
the corpus for each of the masculine, feminine and
gender-neutral terms was 280 sentences for each
of the emotions (anger, joy, fear, sadness), against
which the bias was measured.

3.2 Models and Architectures Used

BERT, which stands for Bidirectional Encoder Rep-
resentations from Transformers, uses an attention
mechanism to learn the contextual relationship be-
tween words. (Devlin et al., 2019) It contains a
nondirectional encoder which inputs the entire se-
quence of words at once. BERT utilizes a masking
language model that randomly masks some of the

1For example, aunt/uncle



Masculine Feminine Neutral
He She They

This man This woman This person
This boy This girl This child

My brother My sister My child
My son My daughter My sibling

My husband My wife My spouse
My boyfriend My girlfriend My partner

My father My mother My parent

Table 2: List of gendered terms

Anger Fear Joy Sad
anger anxious ecstatic depressed

annoyed discouraged excited devastated
enraged fearful glad disappointed
furious scared happy miserable
irritated terrified relieved sad

annoying dreadful amazing depressing
displeasing horrifying funny gloomy
irritating shocking great grim

outrageous terrifying hilarious heartbreaking
vexing threatening wonderful serious

Table 3: Emotion sets containing relevant words

tokens from the input to predict the original vocab-
ulary of the masked word based on its contextual
relationship with other words in the sentence.

For our experiments, we used XLM-RoBERTa,
a popular BERT model, a transformer-based multi-
lingual model trained on 100 different languages.
(Conneau et al., 2020) It is a cross-lingual approach
that uses both XLM and RoBERTa and can deter-
mine the correct language from the input data-id.

3.3 LIME
Locally Interpretable Model-Agnostic Explana-
tions or better known as LIME is a framework that
explains the predictions of any machine learning
classifier (Ribeiro et al., 2016). With explanation
defined as a model g ∈ G, where G is a class of po-
tentially interpretable models, the explanation from
LIME is obtained with the help of the following:

ξ(x) = argmin
g∈G

L (f, g, πx) + Ω(g) (1)

where L(f, g, πx) is a measure of how unfaithful g
is in approximating f in the locality defined by πx,
given f(x) is the probability (or a binary indicator)
that x belongs to a certain class, πx(z) is a prox-
imity measure between an instance z to x used to
define locality around x, and Ω(g) is measure of
complexity.

This formulation can be used with different ex-
planation families G, fidelity functions L, and com-
plexity measures Ω.

Ribeiro et al. (2016) also extensively discusses
how the framework could be used to derive insights
on the undesirable correlations that the classifiers
pick up during training. An instance of a ‘husky’
being classified as a ‘wolf’ was demonstrated as
the classification model depending on the back-
ground behind the husky rather than the features
of the husky itself. This ability of the framework
motivates us to understand how a text classifier
could depend on seemingly unrelated features of
the input to produce an output that is biased.

3.4 SHAP

SHAP (SHapley Additive exPlanations) is a unified
framework that provides interpretability for model
predictions (Lundberg and Lee, 2017). This work
introduced the concept of an explanation model,
and it builds on the classical Shapely value esti-
mation methods (Ŝtrumbelj and Kononenko, 2013;
Lipovetsky and Conklin, 2001; Sen and Zick, 2016)
towards additive feature attribution methods for the
approximation of SHAP values.

SHAP values are proposed as "a unified measure
of feature importance" and identify the contribution
of each feature in the input, to the prediction. The
Shapely values are obtained from a conditional ex-
pectation function of the original model providing
the solution to the following theorem:

ϕi(f, x) =
∑

z′⊆x′
|z′|!(M−|z′|−1)!

M ! [fx (z
′)− fx (z

′\i)] (2)

where |z′| is the number of non-zero entries in
z′, and z′ ⊆ x′ represents all z′ vectors where the
non-zero entries are a subset of the non-zero entries
in x′.

This would involve calculating the marginal con-
tribution of every feature by considering all possi-
ble permutations (which totals to N ! permutations,
where N denotes the number of features). We con-
sider the mean of the contributions of all features in
order to estimate its aggregate contribution to the
prediction of a particular class. In other words, we
could say that the Shapely value is an indicator of
how much weight a specific feature carries, which
is also the difference between the actual prediction
and the base prediction measured by the classifier.



4 Methodology

4.1 LIME
To estimate the bias present in our models, we’ve
averaged the values of the contributions of the gen-
dered features from Table 2 which are depicted
in Tables 4, 5, 6 and 7. These contributions were
calculated using the ratio of the gendered word’s
weightage to the probability of the prediction of the
actual class. In these tables, we’ve also attempted
to individually specify the number of samples that
have a positive correlation and those that have a
negative correlation with the ground truth label.
Additionally, we have quantified the frequency of
samples that have a positive contribution greater
than 5% and 10% to the prediction of the correct
class.

Although our initial study only takes into ac-
count the contributions of each feature, we have
also calculated the differences in terms of the con-
tribution of each gendered feature for a specific
template sentence, and mapped out comparative
distributions of these features, the results of which
are included in the Appendix A. These distributions
take into consideration only the cases where the
gendered term has a positive correlation with the
actual class. For instance, sentences using the tem-
plate ’anger’ should ideally be predicted as nega-
tive, and thus we only consider the gendered term’s
positive contribution to the prediction.

A shortcoming of LIME is its local interpretabil-
ity, where it creates a linear local model around
a singular data instance. There can be potential
instability caused due to the variation in sampling
of the data, which can lead to differences in the ex-
planations for the same sample. In addition to this,
the choice of hyperparameters can also affect the
explanations produced for the same data sample.
Thus the explanations produced, while somewhat
accurate, may not necessarily be robust.

4.2 SHAP
Due to the disadvantages and uncertainty in LIME
predictions, we turned to an alternative method,
SHAP, to understand our model’s predictions. The
Shapely values allow us to gain an understanding of
how exactly a particular feature impacts the prob-
ability of a particular prediction with respect to
the original base prediction. SHAP is significantly
more stable and does not rely on the same assump-
tions that the linear local model of LIME suffers
from. In addition to this, it combines predictions at

Gender Signal Positive
Correlation

Negative
Correlation Freq > 0.05 Freq > 0.1

Masculine 124 156 43 5
Feminine 135 145 66 16
Neutral 184 96 94 26

Table 4: Contributions of gendered terms to the LIME
predictions for the template sentences associated with
anger

Gender Signal Positive
Correlation

Negative
Correlation Freq > 0.05 Freq > 0.1

Masculine 140 140 40 5
Feminine 125 155 37 4
Neutral 87 193 13 1

Table 5: Contributions of gendered terms to the LIME
predictions for the template sentences associated with
joy

Gender Signal Positive
Correlation

Negative
Correlation Freq > 0.05 Freq > 0.1

Masculine 142 138 58 11
Feminine 164 116 70 19
Neutral 198 82 104 42

Table 6: Contributions of gendered terms to the LIME
predictions for the template sentences associated with
fear

Gender Signal Positive
Correlation

Negative
Correlation Freq > 0.05 Freq > 0.1

Masculine 128 152 53 17
Feminine 153 127 66 19
Neutral 196 84 104 49

Table 7: Contributions of gendered terms to the LIME
predictions for the template sentences associated with
sadness

both a global and a local level to give an estimate
of the feature’s importance.

Using SHAP, we’ve attempted to calculate the
mean prediction value to estimate every gendered
feature’s influence on the model’s prediction. This
was done for each of the four emotion sets, and
the results are presented in tables 9, 8, 10. We’ve
noticed that while for some emotion sets, there ap-
pears to be a general trend in the correlations of the
features for a particular gender, there is also a no-
ticeable variation in whether these correlations are
positive or negative. This could be an indicator that
the bias learned by our models is less generalized
for a specified gender than we assume, and thus
further analysis using other explanatory algorithms
would be required to study if this is the case.

5 Results and Discussion

Despite LIME’s instability and its variation in pre-
dictions, we notice some generalizable trends in the



Term Anger Joy Fear Sad
she -0.1734 0.0771 -0.1739 -0.1516
woman -0.0845 -0.0327 -0.0567 -0.0753
girl -0.0099 0.0140 -0.0212 -0.0302
sister -0.3003 0.0001 -0.3883 -0.3445
daughter 0.0057 0.0082 -0.0078 -0.0216
wife -0.0775 0.0433 -0.0880 -0.0796
girlfriend -0.0203 -0.0810 -0.0316 -0.0305
mother -0.5185 0.5365 -0.5656 -0.5568
her 0.0067 -0.0267 0.0167 0.0159

Table 8: SHAP feature contributions for feminine terms

Term Anger Joy Fear Sad
he -0.0557 0.1033 -0.0452 -0.0583
man 0.0370 0.0950 0.0406 0.0206
boy -0.0731 0.0442 -0.0787 -0.0694
brother -0.1413 -0.1026 -0.1327 -0.1445
son 0.2099 -0.1571 0.2002 0.2108
husband -0.0048 -0.0098 -0.0367 -0.0407
boyfriend 0.0590 -0.0881 0.0316 0.0666
father 0.1688 -0.2052 0.1078 0.1030
him 0.0747 0.009 0.0612 0.048

Table 9: SHAP feature contributions for masculine
terms

explanations produced. For instance, terms asso-
ciated with gender neutrality seem to consistently
display a positive correlation with predictions asso-
ciated with ’negative’ emotions, i.e. anger, fear and
sadness, whereas we observe that the predictions
experience a negative correlation with predictions
associated with joy. These results are far less pro-
nounced for the associations between the masculine
terms and the emotion sets, as well as that of the
feminine terms. However, there does appear to be
a slightly stronger positive association of the femi-
nine terms with fear and sadness, and a somewhat
negative association with feminine terms associ-
ated with joy. That said, due to the variance in
LIME explanations, the results are not conclusive.

An additional factor to consider is the pre-trained
model itself, which was trained on data from social
media (Twitter), and thus might contain stronger
unwanted associations due to the opinionated and
polarizing nature of social media.

As SHAP has shown us, these inclinations may
vary based on the features within a particular gen-
der set as well (some may have a positive corre-
lation with the emotion, whilst some may have a
negative correlation). In addition to this, several of
the terms that contain higher values of association

Term Anger Joy Fear Sad
they 0.0826 -0.2282 0.0416 0.0596
person -0.2362 0.0609 -0.2265 -0.2188
child 0.0098 -0.1030 0.0166 0.0071
sibling 0.0744 -0.0061 0.0622 0.0502
spouse 0.0049 -0.1113 -0.0126 -0.0141
partner -0.0346 -0.0612 -0.0675 -0.0756
parent -0.0459 -0.0838 -0.0618 -0.0712
them 0.0604 0.0409 0.0183 0.0505

Table 10: SHAP feature contributions for gender-neutral
terms

Masculine Feminine Neutral
Anger 88.89% 44.44% 44.44%

Joy 55.56% 66.67% 66.67%
Fear 66.67% 44.44% 44.44%
Sad 77.78% 44.44% 66.67%

Table 11: Percentage of Agreement between the LIME
and the SHAP values

indicate a positive correlation with the negative
emotions and vice versa. As mentioned before,
the bias from the system does not appear to be
generalized across genders, and thus these results
warranted an in-depth term-by-term analysis to as-
sess the extent to which they contribute to bias in
these systems.

Table 11 illustrates whether or not there is an
established correlation of the LIME and SHAP val-
ues of the gendered features with the ground truth
label, for each emotion set. The table indicates
the percentage of gendered features whose LIME
and SHAP values are in agreement with each other.
The positive agreement of these values indicates
that there is a strong likelihood that that particular
term may contribute either positively or negative
toward the model’s prediction.

In order to isolate the terms that are most likely
to contain such bias, we attempt to gauge if the
LIME and SHAP values of these terms across all
emotion sets are in agreement with one another.
Table 122 indicates the terms that are most likely to
be biased, and the terms that show too much vari-
ance in their contributions to the predictions to be
biased in a specific direction. We determine that a
term is likely to be biased if the contributions of its
LIME and SHAP values across multiple classes are

2’Almost all’ indicates the term’s values are only in agree-
ment for 3 values, ’almost none’ indicates that they are only
in agreement for one



All Almost All Almost None None
man, boy, father, son he, boyfriend NA him

girl, wife, child she, sister woman, daughter, girlfriend, her mother
child they, partner parent, them person

Table 12: Agreement between LIME and SHAP values

consistently in alignment with one another, and we
conclude that it is not biased in a specific direction
if there is a great degree of variance in the mutual
alignment of these values.

6 Ethics Discussion

In their work that critically surveys work done in
the field of bias in language technology, Blodgett
et al. (2020) recommends the inclusion of a state-
ment to describe what we consider harmful system
behaviours. In this section, we define the ways in
which bias could exist in our system and how it
could be detrimental.

6.1 What is bias?

We consider bias to be: the questionable associa-
tion of gender signals (including pronouns) with a
particular behaviour or emotion such that it influ-
ences the output of sentiment analysis models. We
inspect how this association could contribute to the
probability output of a sentiment analysis model.
These biases in the output cause representational
harms to the users by furthering stereotypes3. Con-
sidering the social context, this would dispropor-
tionately harm those who are already marginalized
and underrepresented.

6.2 Beyond the Binary

In computational studies discussing gender, there is
often not a clear, critically informed understanding
of gender (Brooke, 2019). Additionally, studies on
gender bias heavily rely on pronouns to measure
‘gender’ bias which as discussed in Ramesh et al.
(2021) our contributions could be more inclusive
of the definitions of self-identity of pronouns (Zim-
man, 2019). The mitigation of this bias is a critical
task, and so is making sure that pronouns are not
likely to influence the outputs of a system. How-
ever, the social impact of this work is limited if it
is carried only for the ‘binary gender’.

Our work shows a trend of bias for individuals
whose identity falls outside of the gender binary

3We are omitting explicit examples of the stereotyping to
avoid further stereotyping

who would be most likely to use gender-neutral
terms and hence face these biases due to the sys-
tem. It is important to note that we included they
pronouns as a part of our gender-neutral sentence
sets, and the work may be expanded to the inclusion
of neopronouns 4 (example: xe/xem). In further
work, this may help the NLP community to find
a way to discern and mitigate the systemic biases
that non-binary individuals might experience that
the language models may be amplifying.

7 Conclusion

Through frameworks of explainable AI, we attempt
to see if there is an established bias trend for mas-
culine, feminine, and neutral gender signals in sen-
timent analysis and conclude that there is much
variance. However, through LIME’s correlations
and SHAP’s feature contributions, we observe that
the model is drawing on the information from these
gendered features. Identifying this bias for neutral
gender signals opens scope for work for bias identi-
fication beyond the binary. Aside from this, in our
expansion of this work, we aim to look at a broader
range of models and tasks and see if the conclusions
drawn by our methods used to form explanations
agree with more traditional bias estimation metrics
similar to those within Word Embedding Fairness
Evaluation framework. We also look to explore
more robust methods for developing these expla-
nations and identify more features related to race,
gender, etc that exhibit such societal bias.
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A Appendix

Figure 1: Distribution of the contribution of masculine
features to the ’negative’ class in LIME (Anger)

Figure 2: Distribution of the contribution of feminine
features to the ’negative’ class in LIME (Anger)

Figure 3: Distribution of the contribution of gender
neutral features to the ’negative’ class in LIME (Anger)
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Figure 4: Comparative graph of all the distributions of
features to the ’negative’ class in LIME (Anger)

Figure 5: Distribution of the contribution of masculine
features to the ’positive’ class in LIME (Joy)

Figure 6: Distribution of the contribution of feminine
features to the ’positive’ class in LIME (Joy)

Figure 7: Distribution of the contribution of gender
neutral features to the ’positive’ class in LIME (Joy)

Figure 8: Comparative graph of all the distributions of
features to the ’positive’ class in LIME (Joy)

Figure 9: Distribution of the contribution of masculine
features to the ’negative’ class in LIME (Fear)

Figure 10: Distribution of the contribution of feminine
features to the ’negative’ class in LIME (Fear)

Figure 11: Distribution of the contribution of gender
neutral features to the ’negative’ class in LIME (Fear)



Figure 12: Comparative graph of all the distributions of
features to the ’negative’ class in LIME (Fear)

Figure 13: Distribution of the contribution of masculine
features to the ’negative’ class in LIME (Sad)

Figure 14: Distribution of the contribution of feminine
features to the ’negative’ class in LIME (Sad)

Figure 15: Distribution of the contribution of gender
neutral features to the ’negative’ class in LIME (Sad)

Figure 16: Comparative graph of all the distributions of
features to the ’negative’ class in LIME (Sad)


